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We examine the superfluid phase of a hard-core boson model with nearest-neighbor exchange J and four-
particle ring-exchange K at half filling on the square lattice. At zero temperature we find that the uniform
superfluid in the pure-J model is quickly destroyed by the inclusion of negative-K ring-exchange interactions,
favoring a state with a �� ,�� ordering wave vector. Minimization of the mean-field energy suggests that
another type of superfluid state, characterized by nonzero bond chirality, is formed. We also study the behavior
of the finite-T Kosterlitz-Thouless phase transition in the uniform superfluid phase, by forcing the Nelson-
Kosterlitz universal jump condition on the finite-T spin-wave superfluid density. Away from the pure J point,
TKT decreases rapidly for negative K, while for positive K, TKT reaches a maximum at some K�0 in agreement
with recent quantum Monte Carlo simulations.
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I. INTRODUCTION

The road to discovering new quantum phenomena such as
exotic phases or unconventional quantum-phase transitions is
paved by the understanding of quantum Hamiltonians with
competing microscopic interactions. Recent work has shown
that competing kinetic energy terms, particularly four-
particle “ring-exchange,” is a fertile venue for the study of
valence-bond solids and unconventional quantum-phase
transitions.1–4

Long relegated to toy models of easy-plane spin systems
or simple boson theories, the understanding of U�1� Hamil-
tonians has resurfaced as critical for the engineering of ex-
otic quantum phases of ultracold atoms in optical lattices.
Buchler et al.5 presented the design of a ring-exchange inter-
action for bosonic cold atoms in two-dimensional �2D�
square optical lattices. There, a conventional nearest-
neighbor hopping term competes with a four-particle ring-
exchange, which arises out of the hopping of boson pairs on
the corners of square lattice plaquettes to an intermediate
molecular state and back to the �opposite� plaquette corners.
The Hamiltonian proposed in Ref. 5 can be written,

H = − J�
�ij�

�bi
†bj + bibj

†� − K �
�ijkl�

�bi
†bjbk

†bl + bibj
†bkbl

†� ,

�1�

where the first term is the usual boson hopping, and the
second is the ring-exchange interaction. Here, i and j are
neighboring sites, lying opposite to sites l and k �respec-
tively�, which together form the basic square plaquette of the
2D lattice. This model has drawn significant attention re-
cently from proposals that it may harbor an exotic quantum
liquid phase that possesses d-wave correlations—a so-called
d-wave Bose liquid �DBL� phase6—including extensive nu-
merical investigation using exact diagonalization and the
density matrix renormalization group.7

The main difficulty with the Hamiltonian �1� that prevents
an exact solution in 2D for large systems �or the thermody-
namic limit� is the presence of the prohibitive “sign-
problem” in quantum Monte Carlo �QMC� simulations for
the parameter regime K�0. In fact, the same model in the

parameter regime without the sign problem, K�0, has been
solved by QMC previously both at half filling2 and in the
presence of a symmetry-breaking chemical potential.8 In this
model, it was demonstrated2 that the uniform superfluid
phase that dominates for large J is destroyed by increasing
the magnitude of the ring-exchange interaction, which real-
izes first a �� ,0� valence-bond solid �VBS� for 8�K /J
�14, and a �� ,�� charge-density-wave �CDW� for K�14.
The intermediate superfluid to VBS quantum-phase transi-
tion was studied intensely9 as one of the first candidates for a
deconfined quantum critical point.10 However, other interest-
ing behavior occurs in the model, in particular in the experi-
mentally relevant regime of finite temperatures, where rela-
tively little attention has been paid.9

In order to elucidate the mechanism by which the super-
fluid phase, which occurs for dominant J in Eq. �1�, is de-
stroyed by the four-site K interaction, we explore in this
paper the behavior of the model using linear spin-wave �SW�
theory. First, we calculate the dispersion and superfluid den-
sity �s at T=0, where its behavior as a function of K indi-
cates the realization of a phase with �� ,�� symmetry for
K /J�−2. Exploring the ordering nature of this phase in
mean-field theory reveals a �� ,�� modulated in-plane order
parameter, which can be interpreted as a type of superfluid
with bond-phase chirality. In the uniform superfluid phase,
we also calculate the superfluid density at finite-temperature,
and estimate the position of the Kosterlitz-Thouless �KT�
transition using the universal jump condition. Interestingly,
for K�0 the linear spin-wave theory reproduces the QMC
result9 that the maximum temperature of the KT transition
does not occur when K=0, rather it happens at some inter-
mediate value of K /J.

II. LINEAR SPIN-WAVE THEORY AT T=0

In order to study the destruction of the uniform superfluid
phase by the competing ring-exchange interaction parameter-
ized by K, we begin by examining the behavior of the system
at T=0 in a linear spin-wave analysis. To begin, it is helpful
to write our hard-core boson Hamiltonian as the analogous
2D spin-1/2 XY model using the standard mapping: bi

†→Si
+

PHYSICAL REVIEW B 80, 014503 �2009�

1098-0121/2009/80�1�/014503�7� ©2009 The American Physical Society014503-1

http://dx.doi.org/10.1103/PhysRevB.80.014503


and bi→Si
−. This transforms the Hamiltonian Eq. �1� into

H = − J�
�ij�

�Si
+Sj

− + Si
−Sj

+� − K �
�ijkl�

�Si
+Sj

−Sk
+Sl

− + Si
−Sj

+Sk
−Sl

+� ,

�2�

which can be written with Sx and Sy operators as

H = − 2J�
�ij�

�Si
xSj

x + Si
ySj

y� − 2K �
�ijkl�

�Si
xSj

xSk
xSl

x + Si
xSj

xSk
ySl

y

− Si
xSj

ySk
xSl

y + Si
xSj

ySk
ySl

x + Si
ySj

xSk
xSl

y

− Si
ySj

xSk
ySl

x + Si
ySj

ySk
xSl

x + Si
ySj

ySk
ySl

y� . �3�

As mentioned above, the ground state of the pure-J Hamil-
tonian is a bosonic superfluid, or an in-plane ferromagnet in
the spin language, with an order parameter �Sx��0 at zero
temperature. We therefore perform our spin-wave expansion
around this ordered state, treating the K term of the Hamil-
tonian as a perturbation. As first demonstrated by Gomez-
Santos and Joannopoulos,11 the proper Holstein-Primakoff
representation in the case of the XY model is

Si
x �

1

2
− ai

†ai,

Si
y �

1

2i
�ai

† − ai� , �4�

giving us a leading order approximation to the Hamiltonian
in terms of bosonic spin-wave operators ai and ai

†. Writing
the Hamiltonian in Fourier space gives the linear spin-wave
Hamiltonian

H = HMF + �
k

�Ak�ak
†ak + a−k

† a−k� + Bk�ak
†a−k

† + aka−k�� .

�5�

Here, the mean-field energy is

HMF = − JN −
KN

8
, �6�

while the coefficients Ak and Bk

Ak = JUk + KVk, �7�

Bk = JWk + KXk �8�

are defined in terms of

Uk = 2 −
1

2
�k, �9�

Vk =
1

2
−

1

4
�k +

1

4
cos kx cos ky , �10�

Wk =
1

2
�k, �11�

Xk =
1

4
�k −

1

4
cos kx cos ky , �12�

where

�k = cos kx + cos ky . �13�

This form for the SW Hamiltonian reduces to that obtained
by Bernardet et al.12 in the limit of the simple XY model
�K=0� and the absence of an external magnetic field. Fol-
lowing Ref. 12, we diagonalize Eq. �5� using a Bogoliubov
transformation,

ak = uk�k − vk�−k
† , ak

† = uk�k
† − vk�−k, �14�

where �k and �k
† are destruction and creation operators for

quasiparticles of momentum k. The bosonic commutation
relations are satisfied if

uk = cosh��k�, vk = sinh��k� , �15�

where �k is determined by the requirement that it diagonal-
izes our Hamiltonian. This yields

uk
2 =

1

2	 Ak


Ak
2 − Bk

2
+ 1� , �16�

vk
2 =

1

2	 Ak


Ak
2 − Bk

2
− 1� , �17�

and thus the diagonalized spin-wave Hamiltonian12

H = HMF + �
k

�
Ak
2 − Bk

2 − Ak�

+ �
k


Ak
2 − Bk

2��k
†�k + �−k

† �−k� . �18�

It is the diagonal SW Hamiltonian, in this generalized form,
that we now proceed to use to analyze the behavior of our
superfluid phase at zero temperature.

A. Dispersion

We begin by studying the dispersion, which is obtained
immediately from Eq. �18�

�k = 2
Ak
2 − Bk

2 . �19�

This can be examined as a function of K /J for the Hamil-
tonian Eq. �2�. For K=0 and k→0, one reproduces the ex-
pected linear dispersion,12 a feature which survives for mod-
erate K�0 �at least to first order in the SW theory�—see Fig.
1. No soft modes develop in the K�0 dispersion until very
large values of K /J�103, which is well above the critical
value of K /J=7.91 where a phase transition to a �� ,0� VBS
is known from QMC.2 In contrast is the behavior of the
dispersion in the K�0 regime, which is intractable to QMC
methods due to the negative sign problem. In this case, the
dispersion reveals the development of soft modes at k
= �� ,��. The value of ���,�� tends toward 0 as K /J ap-
proaches −2, as illustrated in Fig. 1. This indicates that an
ordered phase with �� ,�� symmetry is realized for suffi-
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ciently large �K�. The nature of this ordering is discussed in
Sec. III.

B. Zero-temperature superfluid density

The most important quantity characterizing the superfluid
phase is the superfluid density �or spin stiffness�, defined as
the second derivative of the free energy with respect to a
uniform twist 	 of the in-plane spin components across the
system. At zero temperature, one replaces the free energy by
the ground-state energy, hence we use the definition

�s =
�2E�	�

�2	
, �20�

which is valid for 	→0. This is equivalent to finding the
incremental energy per spin resulting from the twist,


E

N
=

�H�	��
N

−
�H�0��

N
=

1

2
�s	

2. �21�

Thus, we are faced with the task of finding H�	�. To do this,
we consider the spins in a site-dependent rotated reference
frame, defined via the standard rotation operator about the z
axis.13 The relevant transformations become

Sj
x → Sj

x cos 	 j − Sj
y sin 	 j ,

Sj
y → Sj

x sin 	 j + Sj
y cos 	 j , �22�

which can also be written in terms of the spin raising and
lowering operators,

Sj
+ → Sj

+ei	j ,

Sj
− → Sj

−e−i	j . �23�

We assume a uniform twist across the spins in the system, so
that the twist 	i−	 j 	, where i and j are nearest neighbors
in the x or y direction. We find that, using the labeling of Eq.
�1�, 	 j =	k , 	i=	l, and thus the 	 dependence of the ring-
exchange term cancels. This gives for our twisted Hamil-
tonian

H�	� = − 2J�
�ij�

��Si
xSj

x + Si
ySj

y�cos 	 + �Si
xSj

y − Si
ySj

x�sin 	�

− K �
�ijkl�

�Si
+Sj

−Sk
+Sl

− + Si
−Sj

+Sk
−Sl

+� . �24�

The linear components of the term proportional to sin 	 can-
cel, so in linear spin-wave theory the twist effectively scales
the nearest-neighbor exchange value J→J cos 	. Thus,
H�	� is obtained directly from the Hamiltonian Eq. �5�, with
the redefinition of

HMF�	� = − JN cos 	 −
KN

8
, �25�

Ak�	� = JUk cos 	 + KVk, �26�

Bk�	� = JWk cos 	 + KXk, �27�

but with the coefficients Uk, Vk, Wk, and Xk unchanged from
Eqs. �9�–�12�. Expanding cos 	 as 1−	2 /2, and noting that
at zero temperature, the thermal expectation value is

nk = ��k
†�k� = ��−k

† �−k� = 0, �28�

we find that

�s =
J

2
+

1

2N
�
k

�JUk − �Ak
2 − Bk

2�−1/2 · �J2�Uk
2 − Wk

2�

+ JK�UkVk − WkXk��� . �29�

Note that we have divided by a factor of two to account for
the fact that Eq. �18� is defined with respect to a twist in a
single lattice bond, while Eq. �22� considers a twist in each
bond in the lattice, a total of 2N bonds.

The T=0 superfluid density calculated in this linear SW
theory, Eq. �29�, is plotted in Fig. 2 for a range of K /J. Note
that, as in the above section, we have set J=1 /2 to corre-
spond to the usual definition of the XY spin model �when
K=0�. The superfluid density curve has its maximum at
K /J=0, with a value of �s=0.2709, which can be compared
to the best numerical estimate for the ground state spin stiff-
ness in the XY model using finite-size scaling quantum
Monte Carlo techniques, �s=0.2696�2�.14 Away from this
maximum at K=0, the superfluid density declines monotoni-
cally with increasing �K�. On the positive K side, �s decreases
relatively gradually, only becoming zero for an extremely
large value of K�103. This is consistent with the above
results for the dispersion, which indicate that no soft modes
develop for moderate values of positive K. Again, exact
QMC results have revealed a T=0 quantum phase transition

kx

ky−π 0 π −π
0

π

0
−π ky

π

0

.5

2

π0 −π
0

kx

FIG. 1. �Color online� The dispersion �k, as a function of k
= �kx ,ky�, for K /J=2 �top� and K /J=−2 �bottom�.
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to a valence-bond solid phase at K /J�7.91,2 reiterating the
limitations of the linear SW theory calculation in this regime.

On the negative-K side, where no QMC results are avail-
able, the value of �s drops rapidly as it approaches −2. In SW
theory, there is a divergent negative contribution to �s at this
value of K /J=−2. This is of course an artifact of linear SW
theory. As explained in the next section, one actually expects
�s to remain finite on the other side of the transition, where
an ordered phase with �� ,�� symmetry is realized.

III. BOND-CHIRAL SUPERFLUID PHASE FOR K�0

Examining our linear SW theory results of the previous
section, for K /J�−2 we expect the development of a phase
with �� ,�� as the ordering wave vector. We can further elu-
cidate the nature of the ordering in this phase by minimizing
the mean-field energy of the ring-exchange Hamiltonian, Eq.
�1�, under the constraint of order with �� ,�� symmetry. By
representing the quantum spins as classical spin vectors,

Si
x =

1

2
sin �i cos 	i, �30�

Si
y =

1

2
sin �i sin 	i, �31�

Si
z =

1

2
cos �i, �32�

we rewrite Eq. �3�, which simplifies to the following Hamil-
tonian:

H = −
J

2�
�ij�

sin �i sin � j cos�	i − 	 j�

−
K

8 �
�ijkl�

sin �i sin � j sin �k sin �l cos�	i − 	 j + 	k − 	l� .

�33�

Note that the angle of the classical vector from the x axis, 	i,
should not be confused with the phase twist variable defined
in the previous section. Restricting ourselves to half filling,
we look for solutions to the angles �i and 	i in the form

�i = �0 + �1ei�·ri, �34�

	i = 	0 + 	1ei�·ri �35�

�where �= �� ,��� by minimizing the classical energy Eq.
�33�. The solution is

�0 = �/2, �36�

�1 = 	0 = 0, �37�

	1 =
1

2
arccos	2J

K
� . �38�

This solution corresponds to a staggered canting of spins
away from the x axis, as illustrated in Fig. 3. To describe this
state, it is convenient to define a chirality Jij associated with
every bond,

Jij = �Si � S j�z = sin�	i − 	 j� . �39�

In the bosonic language one can think of this state as a su-
perfluid phase with a coexisting �� ,�� bond-chirality wave.
In spite of the fact that this superfluid breaks translational
symmetry, this phase does not correspond to a density wave
in the bosonic language. This is because the bond chirality
does not have identical transformation properties to the Sz

component of the �� ,�� staggered magnetization, which
would correspond to a �� ,�� density wave. Specifically, Jij
does not change sign under �spin� time-reversal transforma-
tion, whereas the staggered magnetization does. We note
however that, strictly speaking, this argument for the absence
of density wave order only holds in the case of hard-core
bosons at half filling. The possibility of coexisting superflu-
idity and charge-density order should be investigated sepa-
rately for the cases of soft-core bosons away from half fill-
ing.

Unlike the uniform superfluid density discussed in this
model in Sec. II B, the bond-chiral phase has a mean-field
superfluid density,

.26

.24

.22

.20

-2 10

K/J

ρ s

0 4 6 82

ρMF
s

ρSW
s

FIG. 2. �Color online� The superfluid density as a function of
K /J. The dashed line is the mean-field result, �s=0.25. The linear
SW result for K /J=0 is �s=0.2709, which can be compared to the
best known exact results �s=0.2696�2� �Ref. 14�.

φ1

FIG. 3. �Color online� The �� ,�� superfluid phase as obtained
from mean-field theory, for K /J�−2. Solid �blue� arrows show the
angles of deviation of the classical spin vectors from the x direction
�the out-of plane deviation is zero�. The direction of the dashed
�green� arrows correspond to the sign of the bond chirality J, Eq.
�39�.
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�s =
J2

�K�
,

that vanishes as K→−. No instabilities to other ordered
phases are present in the theory at the mean-field level. It is
therefore only possible to speculate on the remaining T=0
phase diagram for K�−2.

One point on the K�0 phase diagram where the ordered
state is known is at K /J=−, which is expected to harbor a
phase equivalent to the �� ,�� CDW found by QMC simula-
tions for K /J�14. To see this, consider the limit K /J→,
where the Hamiltonian Eq. �1� for K�0 maps exactly onto
the Hamiltonian with K�0, via a rotation of spins on one of
the sublattices by � /2 around the z axis. Therefore, for finite
values of −�K /J�−2, two possibilities exist for the evo-
lution of the bond-chiral superfluid state to the CDW; there
can be a direct transition between the superfluid and the
CDW, or there may be an intermediate valence-bond solid
phase like found by QMC for K /J�8.

IV. FINITE-TEMPERATURE KOSTERLITZ-THOULESS
TRANSITION

We turn now to a discussion of the uniform superfluid
phase in the J-K model at finite temperatures. The goal of
this section will be to map out the finite-temperature phase
boundaries of the superfluid phase in our linear SW theory,
to compare �at least in part� to the results obtained in other
studies. In the QMC work of Ref. 9, the phase boundary
reported has a nontrivial shape, reaching a maximum for a
positive value of K�0. We are interested in whether this
feature can be captured by our SW theory, therefore eluci-
dating the physical mechanism by which this maximum at
K�0 occurs. To do this, we first develop an expression for
the superfluid density for T�0 �Sec. IV A�, then use it to
estimate the SW Kosterlitz-Thouless transition through the
universal jump condition �Sec. IV B�.

A. Finite-temperature superfluid density

At finite temperatures, we may calculate the superfluid
density by recalling its original definition as the response of
the free energy with respect to a twist. Calculating the parti-
tion function from Eq. �18� we obtain the free energy

F = HMF�	� + �
k

�
Ak�	�2 − Bk�	�2 − Ak�	��

+ T�
k

ln�1 − e−�k�	�/T� , �40�

with the dispersion redefined as

�k�	� = 2
Ak�	�2 − Bk�	�2. �41�

As noted previously, the twist-dependent terms in H�	� are
proportional to cos 	, so we can write for 	→0

F = F�	 = 0� +
2N

2
�s	

2 + . . . �42�

which is properly normalized with 2N being the number of
lattice bonds. Therefore, we obtain for the superfluid density

�s�T� = lim
	→0

1

N

�F

�	2 �43�

= lim
	→0

J

2
+

1

N
�
k
	1

2

��k�	�
�	2 −

�Ak�	�
�	2 �

+
T

N
�
k

e−�k/T

1 − e−�k/T
1

T

��k�	�
�	2 , �44�

where the important limits are evaluated as follows:

lim
	→0

�Ak�	�
�	2 = − J

Uk

2
, �45�

lim
	→0

�Bk�	�
�	2 = − J

Wk

2
, �46�

lim
	→0

��k�	�
�	2 = lim

	→0

4

�k
	Ak

�Ak�	�
�	2 − Bk

�Bk�	�
�	2 �

= − 2J
Ak

�k
Uk + 2J

Bk

�k
Wk. �47�

Thus, this calculation yields the following expression for the
superfluid density at finite-T:

�s�T� =
J

2
+

J

2N
�
k

Uk −
J

N
�
k
	1 + 2

1

e−�k/T − 1
�

�	Ak

�k
Uk −

Bk

�k
Wk� . �48�

This SW expression for �s as a function of temperature is
plotted for several parameters K /J in Fig. 4.

B. Estimation of the Kosterlitz-Thouless transition

The superfluid density of Eq. �48�, plotted as a function of
T, decays slowly �see Fig. 4�, crossing zero for relatively
large temperatures. However, as is well known, the XY

.12

.2

.24

.28

0 .2 .4 .6 .8 1

.16

4

17.5

25

0-1.9 -1-1.5

1

6
10

2
πT

ρ s

T/J

FIG. 4. �Color online� The superfluid density, calculated from
Eq. �48�, as a function of the temperature. Lines are labeled by the
parameter value K /J. The universal jump �Eq. �49�� is illustrated as
a dashed line. The exact value for the Kosterlitz-Thouless transition
for K /J=0 is TKT=0.6860�2�, from unbiased QMC calculations
�Ref. 15�.
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model realizes a Kosterlitz-Thouless16 �KT� transition in any
2D lattice, which is manifest as a discontinuity in �s pre-
cisely at TKT. This, of course, cannot be captured by a simple
spin-wave theory. We can, however, take advantage of the
fact that the expected discontinuity in �s in 2D models such
as this obeys the so-called universal jump condition,

TKT =
�

2
�s�TKT� , �49�

first found by Nelson and Kosterlitz.17 One can thus hypoth-
esize a reasonable estimate of TKT by solving T=��s�T� /2,
using �s�T� from our spin-wave theory. An important test of
this idea can be performed at K=0 and J=1 /2, the parameter
values for the XY model. This is illustrated in Fig. 4, where
the crossing point of the dashed line and the curve for K /J
=0 is our SW theory solution to Eq. �49�. The value of TKT
obtained by this procedure is 0.6507, remarkably close to the
exact result of TKT=0.6860�2�, obtained from unbiased QMC
calculations.15

We thus generalize this procedure of calculating TKT in
our linear SW theory to nonzero values of K /J. Results are
plotted in Fig. 5. As is evident by studying Fig. 4 closely, the
SW theory reproduces the remarkable trend that TKT in-
creases for small to moderate values of K�0. In Fig. 4, the
maximum in TKT occurs at K /J�6.5, before beginning to
drop slowly. The phase boundary for the KT transition drops
to zero for the large value of K /J�103, well outside of the
expected range of validity for the SW calculation. Clearly, a
simple spin-wave theory cannot capture the physics of the
superfluid-VBS quantum-phase transition that is observed in
QMC simulations.

On the negative-K side, the phase boundary drops rapidly
to zero as K /J approaches −2, reflecting the T=0 SW theory
result, that a transition to a �� ,�� bond-chiral superfluid

phase, discussed in the previous sections, happens at this
point.

V. DISCUSSION

We have studied through linear spin wave theory the vari-
ous mechanisms which destroy the uniform superfluid phase
in the bosonic ring-exchange model Eq. �1� at half filling,
motivated as a candidate to realize exotic phases in cold
atomic gases in optical lattices.5 As is known from previous
QMC results,2 sufficiently large ring-exchange K�0 pro-
motes: first, a quantum-phase transition to a valence bond
solid state; second, a quantum-phase transition to a �� ,��
CDW state, at large K. In this paper, we have shown that a
moderate value of K /J�0 is also sufficient to destroy the
uniform superfluid phase, promoting an ordered state that is
identified as a different superfluid phase with �� ,��-
modulated bond chirality. In mean-field theory, this transition
occurs at K /J=−2. Since this phase transition occurs in
mean-field theory, it, and the corresponding �� ,��-mod-
ulated superfluid phase, is expected to be robust; however
the actual critical value of �K /J� would of course be larger
than the mean-field value, if fluctuations were taken into ac-
count.

Further, we have studied the finite-temperature phase
boundary of the uniform superfluid phase in linear SW
theory, by calculating the superfluid density and estimating
the Kosterlitz-Thouless transition temperature by forcing it
to obey the universal jump condition. We find that this pro-
cedure yields good numerical agreement with exact QMC
results for K=0. For K�0, the phase boundary monotoni-
cally decreases to T=0 at K /J=−2, indicating a transition to
the �� ,�� bond-chiral superfluid phase discussed above. In-
creasing K�0 from the XY point, the phase boundary ini-
tially increases, reaching a maximum for K�0 before mono-
tonically decreasing. This is in qualitative agreement with
the trend identified with QMC simulations,9 and allows us to
attribute at least the initial increase in TKT for small K /J to
the physics of noninteracting spin waves. It is remarkable
that such nontrivial information about this model, namely,
the nonmonotonic behavior of TKT as a function of K /J, and
the existence of a bond-chiral superfluid phase, can be con-
tained in such a simple analytical theory.
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